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Finite segments of infinite chains of classical coupled harmonic oscillators are treated
as models of thermodynamic systems in contact with a heat bath, i.e., canonical en-
sembles. The Liouville function p for the infinite chain is reduced by integrating over the
“outside” variables to a function py of the variables of the N-particle segment that is
the thermodynamic system. The reduced Liouville function py, which is calculated
from the dynamics of the infinite chain and the statistical knowledge of the coordinates
and momenta at ¢t = 0, is a time-dependent probability density in the 2N-dimensional
phase space of the system. A Gibbs entropy defined in terms of py measures the evolution
of knowledge of the system (more accurately, the growth of missing pertinent informa-
tion) in the sense of information theory. As |t | — oo, energy is equipartitioned, the
entropy evolves to the value expected from equilibrium statistical mechanics, and py
evolves to an equilibrium distribution function. The simple chain exhibits diffusion
in coordinate space, i.e., Brownian motion, and the diffusivity is shown to depend only
on the initial distribution of momenta (not of coordinates) in the heat bath. The har-
monically bound chain, in the limit of weak coupling, serves as an excellent model for
the approach to equilibrium of a canonical ensemble of weakly interacting particles.

KEY WORDS: entropy; information theory; approach to equilibrium;: coupled
harmonic oscillators; Liouville function; nonequilibrium statistical mechanics.

1. INTRODUCTION

We consider the approach to equilibrium of a finite subsystem of an infinite chain of
coupled harmonic oscillators—the subsystem representing the usual thermodynamic
system, and the rest of the chain representing the heat bath. In this approach, we
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follow Blatt,'> who argues that statistical mechanics is the mechanics of limited, not-
completely-isolated systems, rather than of large, complicated ones. Interactions
between the system and the outside world govern the approach to equilibrium,
rather than the ergodicity of the system per se.

Our finite subsystem in an infinite heat bath is equivalent to the canonical ensemble
of Gibbs. In this respect, we note that, in equilibrium statistical mechanics, calculations
of canonical ensembles (systems open to energy flow) are usually easier and less
strained than are those for the isolated, microcanonical ensembles, which must
depend on ergodicity.

We define py, without reference to an ensemble, simply as the probability
density in phase space appropriate for our N-particle subsystem, based on our
knowledge of the system. (The phase space here considered is the 2s N-dimensional
space, where s is the number of degrees of freedom of each particle, in which Gibbs
represented each system of an ensemble by a point.) We calculate py as a reduced
Liouville function, explicitly obtained from the Liouville function p of the infinite
system, and automatically satisfying the condition

[ pwar =1 (1)

Ir

where I is the N-particle phase space. We then use for the entropy the expression
Sy = —ks |_pyIn(k*¥py) T 2

where £ is (for present purposes) a constant with the units of action, introduced to
make the argument of the In term dimensionless. We regard py as a time-dependent
function that evolves from its initial value via the equations of motion of the coupled-
oscillator system, becoming, after a long time, an equilibrium distribution corre-
sponding to the temperature of the heat bath.

Our approach modernizes that of Gibbs,® who used an expression similar to
Eq. (2) for entropy. With Jaynes,® we regard the entropy in terms of information
theory, and note that he has shown" that Eq. (2) gives the correct entropy of equi-
librium thermodynamics when py is the canonical distribution function. We show in
detail that, as the system moves away in time (in either direction) from its initial
conditions, increasingly more distant members of the chain become pertinent to the
behavior of the subsystem. We illustrate the point made by Katz'®, who states that,
as we move away in time from the initial conditions, we move toward a state of
knowledge that can only be described as equilibrium.

Mazur and Montroll®® have studied ergodicity and irreversibility in systems of
coupled harmonic oscillators, treating finite and infinite systems in one, two, and
three dimensions in great generality. Much of the development presented here is at
least implicit in their paper, and the mathematical techniques they exhibit are widely
applicable to much more general systems of oscillators than are discussed here. They
do not, however, calculate either py or any expression for the entropy.

By a process, the physical basis of which is not entirely clear to us, Ford et al.(”
obtain Brownian motion for a single particle, harmonically coupled to a system of
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coupled harmonic oscillators. We obtain Brownian motion of a single particle as a
direct specialization of a more general result, simply as a consequence of the equations
of motion and the dispersion of our knowledge of the initial conditions. The Brownian
motion of a single oscillator follows also from the result of Mazur and Montroll!®
that its momentum is generated by a Gaussian random process when the oscillator
is coupled properly to an infinite chain of other oscillators.

In Section 2, we develop the dynamics of two specific coupled-oscillator chains;
in Section 3, the Liouville function p and its reduction py are calculated in general
by means of the characteristic function. Section 4 presents the specific calculation of
py and the entropy as functions of time for both types of chains, and, in Section 5,
we show that, as t — co, we obtain equipartition of energy from reversible dynamics
as a direct consequence of the statistics. We discuss correlations and diffussion in
Section 6, where we obtain Brownian motion for the simple chain. Liouville functions
of particularly elementary subsystems are displayed explicitly in Section 7, and the
entropies of these subsystems are developed in Section 8. In Section 9, we discuss
some pertinent background material and the significance of the present work, and

Section 10 is a brief historical note, citing earlier work and its relationship to the
present paper.

2. DYNAMICS

In this section, we present the solutions to the two kinds of infinite systems to be
considered: (a) An infinite chain of masses and springs, as shown in Fig. 1a, for
which the Hamiltonian is

Ho= 3 [(p2/2m) + ¥eComs — 5] 3

-

and (b) an infinite chain of masses and springs, with each mass harmonically bound

to its coordinate origin via an elastic bar, as shown in Fig. 1b. Here, the Hamiltonian
is

Hy= 3 (032 + Prloun — 5% + 1K) @

A=—00

The solution can be obtained by either of two methods: (1) a direct attack of
the equations of motion of a particle, leading to an infinite series, or(2) a normal-mode
analysis of a finite system, inversion to obtain x(z) and p(¢), and calculation of the
limit as the number of particles in the chain becomes infinite. In either case, the
solutions of the equations of motion can be written

560 = T B0 + puss0) 8,0)m) (5a)
and

Dult) = mdx,(t)]dt = mz,(t). (5b)



296 Manuel A. Huerta and Harry S. Robertson

- 2 1‘
X I
I
{
I
|

HEAT——»«SYSTEM-—»«—B AT H----

Fig. 1. The two coupled harmonic oscillator chains of this paper, consisting of a thermodynamic
system of masses numbered 1 to N and their connecting springs, and a heat bath of the rest of the
chain, extending infinitely far in both directions. Case (a) is a simple chain, whereas case (b) has each
mass harmonically bound by a leaf spring of constant K to a rigid support structure.

In case (a), f,{¢) is given by a simple Bessel function as
Jlt) = JoQot) ©)
where w? = k/m, and g,(¢) is given by
¢ r
&)@ = | hwt')dr @)
In case (b), we obtain

S = 7t ! d¢ cos rp cos[Qt(1 — 2y cos $)1/3] ®

where 22 = (K + 2k)/m and y = (w/£2)% In the most useful subset of case (D),
the coupling springs k are much weaker than the localizing spring K, so that we have
v <€ 1. In this case, Eq. (8) can be approximated as

Jit) = J(yQ1) cos[Q1 — (rn/2)] ©)
and the corresponding expression for g,(¢) is
gt) = J(y81) sin[Qt — (rm/2)]. (10)

In both cases, the solutions are time reversible; i.e., x,(¢) = x,(—1), and p,(¢) =
—pn{—1). The importance of any particle’s initial conditions to its own future (or
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past) is seen to diminish as | 7| increases, and the distance of the most important
members of the chain is seen to grow. Herein lies the key to the approach to equi-
librium.

3. THE LIOUVILLE FUNCTION

One of the main results of this paper is the calculation of the Liouville function,
or reductions of it, from a knowledge of the exact solutions of the dynamical variables
X,(t) and p,(¢) in terms of initial values, as given by Eqs. (5)—(10). Given an initial
probability distribution for the set {x,(0), p.(0); all n}, we seek the probability
distribution for these quantities at time ¢; i.e., we solve for the Liouville function at
time ¢ in terms of its value at ¢ = 0.

The solution can be given simply in terms of the characteristic function

P({ku}, {Ga}. 1) = $(k, g, 1) as
pl{Xal, {Put, 1) = f exp[—i(k - x + q - p)] p(k, q, 1) [] (dk,/27)(dga/27)  (11)

where k- x = Y, kX, , ' P = 2. guDn , and n ranges over all the (infinite) set of
particles. The p given by Eq. (11) for the infinite chain satisfies the Liouville equation.
The characteristic function is defined as

$(c, q,1) = [ explilk - x + q - D)l p(x, p., 1) [] o, dpy (12)
‘ or
$(k, g, 1) = Cexplitk - x + q - P)]> (13

where {---> denotes the average over the entire phase space. But, since each x,(?)
and p,(2) is given by Egs. (5) in terms of the initial conditions x,(0), p,(0), and ¢,
‘we may obtain the average of Eq. (13) by integrating over the initial conditions, or

Bk, 0,7) = [ explik - x(1) + ig - D] plx(O)) { (0}, O]
x TT dx.(0) dp,(0). (14
We are interested principally in the Liouville function reduced for an N-particle
subsystem of the chain. This function, denoted by py({x.}, {ps}, f), depends only on

the positions and momenta of the particles in the subsystem and is obtained from p
by integrating over all the x, and p,, that are not in the subsystem. We obtain

pExad, { pats 1) = f exp[—i(k - X + q - P)y] dn(k, q, 1) [] (dk,/27)(dg,/2m)  (15)

=1
where

dulk, q, 1) = [ explik - x(1) + iq * B(O)]x pLxAO)} { PO}, O]
x T dx,(0) dp,(0). (16)
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Thus, the influence of the particles outside the subsystem is taken into account
because the initial conditions of the entire chain enter the calculation of the reduced
characteristic function ¢y in Eq. (16), which then determines py in Eq. (15).

4. CALCULATION OF o

The system to be studied consists of N adjacent particles of an infinite chain, the
remainder of which is regarded as a heat bath. We suppose our knowledge of the initial
positions and momenta of the particles in the system to be expressed as skewed
Gaussian probability distributions that may be as narrow as techniques of measure-
ment permit. The initial conditions of the heat bath are also expressed as Gaussian
distributions, this time not skewed, since we assume no individual knowledge of
members of the heat bath. We do, in a sense, make a nonthermal assertion about the
heat bath when we assume the initial distributions to be uncorrelated Gaussians,
rather than the canonical exp(—BH), but the resultant simplification almost justifies
the procedure. Our principal justification, however, is our thesis that equilibrium is a
state of knowledge; therefore, even when the initial distribution of the surroundings
is nonthermal, the subsystem and its surroundings should evolve to a final state of
equilibrium as a consequence of the temporal diffusion of ignorance, which is implicit
in the dynamics developed in Section 2. We verify that this point of view is valid in
Sections 5-7.

We therefore write p({x},{p}, 0) as the product of four products, two over the
coordinates of the subsystem, here numbered 1 to N, and two over the coordinates
of the bath, where I1” denotes the omission of subsystem variables. We have

o), { P}, 0) = ﬁ exp{—[x,(0) — u, P/2c%} fj] exp{—[ p(0) — v,]2/26%

e a2m)t/2 8(2m)L/2
» exp[—x,%(0)/2¢*] 1, exp[—p,2(0)/2%]
x [] 2m) 2 I1 T2m) : 17)

The expressions needed for Eq. (16) may be written, by use of Egs. (5), as

«©

N
k- x(r) = ‘_[, ki Y [x0)fu-i®) + pul0) goilt)/m2]

N=—uw

o

= 3 %O Y hh+ T [0 Y kgt as)

w N @® N
g pt)=m Y %00 Y qifuit) +m Y [pO/mR] Y q:80it) (19
N=—00 i=1 F=—00 i=1
We now calculate $(k, g, £) from Egs. (16)~(19), using [~ exp(—ax? - bx) dx =
(m/a)*/? exp(b*/4a). The result is

Pn(k, q, 1) = ﬁ P, (20)

re=]
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where

Py = exp i Z Un Z (s fui(t) + mqa‘fn—j(t)]E (21a)

Py = exp ji i (vn/m$2) % [k; gn-i(2) + mg; gn_j(t)lg (21b)
N v . 2

Py = exp (3 (~2) |3 W fuck) + s o 01 @1)
N N 2

P = ep (X (82 | § )+ st lf ) 10)

Py = exp (8 (< | 3 tfocst) + O] @1e)

Py = exp (3 (/a2

2) (21f)

are the naturally arising factors in the integration of Eq. (16). We note, however,
that 3 in Py’ and P, can be replaced by X..___. if appropriate changes are also made
in Py and P,’; therefore, we write

z [k; 8ni(t) + mg; £n_(1)]

N

Z [&; fai(®) + m%fn——f(f)]gz) (21¢)

i=1

N
P, = exp (z (e — a%)2]

n=1

Py = exp ( S (L2 — 9)2m ]

5 s o)+ mas 1] ) 210

Po=ew (3 ()| % Bihot) + masfoniO] ) C1e)
0 N 2%

Py = exp ( S (—2mee) g S hy gs(t) + ma, gn_ja)]g ) Q1)
7 —— j=1

The double finite sum in Eq. (21¢) is now replaced by

N
Z [k ;Aif(2) + 2kiq;iBi(t) + q:9;Ci()]

Z,5=1

where
A;(t) = Z Ini(t) frs(t) = A1) (22a)
Bit) =m Zlf;t—i(l ) i) (22b)
N
Cit) = m? Y, Foei(®) fuei(t) = Ci(0). (22¢)

n=1
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The sum in Eq. (21¢) is replaced in exactly the same manner by the expression

N
Y, lkkas(t) + 2kiqb4(t) + qigica(0)]
=1
where a;; , by, and ¢;; differ from A4,;, B;;, and C;; only by having 3°,___ instead
of Znﬁ Also, since f; = f_;, it may be shown that b,; = b;; , a result that is not true
for By;.
We use well-known properties of Bessel functions to calculate a;;, b;;, and ¢;;

in closed form for the two specific chains of Fig. 1. For case (a), we obtain

2a,(t) = 8i; + Jo_i(dewt) (23a)
2by(t) = wm[Jy;_o;q(dwt) — Joisin(dwt)] = (m/2) d[J, 22’—2:‘(4‘”’)]/‘# (23b)
2¢,(t) = (Mw)yi_sspo(dwt) 4 Joipio(dwrt) — 205 o (dwt)

+ 275:-9/0) — Jpi_9540(0) — Jy;_52(0)] (23c)

and, for case (b), the results are

2a,(t) = 8y + J;_{(2y8t) cos[282r — L(i — j)m] (24a)
2b,(t) = —mEJ;_[(2y0¢t) sin[2Q¢ — 1(i — j)=] (24b)
2e,,(t) = (M) 8;; — (MQT,_(2y01) cos20t — ¥i — j)m]. (24¢)

Similarly, the double finite sum in Eq. (21d) is replaced by
Y lkik;Di(t) + 2kigiEif(0) + q,q:4:5(1)]

4,j=1

where 4,; appears again because g; = Qf; , and

N
Di(t) = (mS)2 Y. go-it) uilt) = Dyi(t) (25a)
n=1
Ey(t) = m™10Q= Z Zn—i(t) £ni(t) (25b)

and the double sum in Eq. (21f) is replaced by

(mQ2)? i [kik; dii(t) + 2kigsesi(t) -+ qig,0:(2)]

2,5=1

where as before, d;; and e;; differ from D,; and E;; only by having ¥ __ instead of
Zn 1 - Also, as before, we obtain e;; = e, , a result that is not valid in general for E;; .
The quantities d;(r) and e,;(¢) can be calculated in closed form; for case (a), we obtain

|2—J

) = om®) [ ) dy — Then)] — @omy> 3 [ Ry )
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and
exlt) = Gy [ T o() ay (26b)

and, for case (b), the results are

dii(t) = (m8)~*¢; (1) (27a)
and

e:(t) = —(mE2h,(2). (27b)

Using these results, we now write Eq. (20) as

by(k, q,7) = exp [~ )

2,7

(kik My + kigiHy; + 4.,0:) + 1Y, (U; + g; Va)] (28)
j

1

where
My = (o~ ) dy + Say+ (3 — O Dy + Bdy = My (29)
H;j = (o — %) By; + by + (82 — D) E;; + (Pey; = Hy; (29b)
Qi = (0® — ) Cyy -+ ey -+ (82 — (D) 4y + LPay; = Qy (29¢)
N
U; = Z [t frs(t) + (0ufmE2) g ()] (29d)
N
Vi=m Z [unfn—i(t) + (Un/m‘Q)gn—J(t)] (293)

At this point, we adopt a more convenient matrix notation, defining a column
matrix Z of the k;, ¢; components such that its transpose is

Z= (kiks seoes kKngy oeees q) (30)

and a real, symmetric matrix W = (W) given by

W — (M H)

where M = (M;), etc. We also include the initial Gaussian centers of the subsystem
in the column matrix R, the tranpose of which is

R = (U,Uy .y UyVy s V). (32)

The characteristic function of the subsystem may be rewritten, from Eq. (28),
in the new notation as

$ulk, q, 1) = exp[iRZ — (ZWZ[2)] (33)
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from which we proceed to calculate py by means of

pn(§xn}; { Py 1) = { expli(RZ — XZ) — ZWZ/2)| [] (dko/2m)(dgn/27)  (39)

n=1
where
‘Y = (x1x2 seees XNP1 5eees pN)‘ (35)

Since W is a real, symmetric matrix, it can be diagonalized by an orthogonal
transformation; we let L be the matrix that diagonalizes W, such that

LWL =4 (36a)

where 4 is diagonal, with diagonal elements labelled A, ..., A5 . We can then write

IWZ = ZLL\WLLZ = ZLAL-Z = ZLALZ (36b)
since I = L. We now write
I7=G (37a)
or
Z=1IG (37b)

where G is a new column vector, and Eq. (36) becomes
Zwz = GAG. (38)

We transform X and R by the same matrix L, defining new column vectors

Y=1Lx (392)
and
F=1IR (39b)
so that Eq. (34) becomes
pr = | xpli(F — ¥) G — (GAG/2] T] (dh/2m)dgn/2m)- (40)

We change the variables of integration from I‘[i1 dk, dq, = Hffl dz, to H?fl dG,, .
We note that the Jacobian of the transformation is simply | det L | = 1. Thus, since
/ 1s diagonal, we obtain

py = ﬁ Qm)1 | expli(F, — Y,) G, — (G,24,/2)]1 dG,

A=l

= ﬁ (2mA )2 exp[— Y222, ] 41

n=1
where
Y=Y—F.
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But, since we know that

2N
] O = 1/det W (42)
n=1
and
2N 2N
IT exp[—¥;%/2A,] = exp [— Y Y,’Z2/2)\n:| = exp[— Y'A71Y¥/2] (43)
n=1 n=1

and since, from Eqs. (38)-(40), with X' = X — R, we have
VAY = X LAY = X' WX’ (44)
we may finally write
px({Xa}s {Pa} 1) = (2m)N(det W)/2 exp[— X' W-1X'/2] (45)

The reduced Liouville function py is displayed in Eq. (45) as a function of the
2N-square matrix W, and the column matrix X’, both of which are time-dependent.
The dependence on the initial most-probable values u, and v, enters only via
X' = X — R, these values appear in R, or in its components U; and V; of Egs. (294, ).
Note that, since all finite sums of the f;, g;, or their time derivatives will vanish as
t — o0, pyeventually loses all dependence on the initial measurement of the subsystem.
The matrix W, through its elements given by Egs. (29a—c), contains both finite sums
(the capital letters) and infinite sums (the lower-case letters) of the f;, g;, and their
time derivatives. The former vanish as 7 — oo, and the latter are explicitly given for
our two cases by Egs. (23), (24), (26), and (27).

The entropy of the subsystem is, from Eq. (2),

N
Sy = —ks [ px InGpy) [] d; dp, (46)
J=1

which, after straightforward calculations, becomes
Sy = kN + kg In[fi—¥(det W)1/2] “n

where % = h/2m, and A is, for classical purposes, only dimensionally equal to Planck’s
constant. The entropy Sy does not involve u, and v, ; it measures missing pertinent
information in the sense of information theory, 3= starting with the correct informa-
tion-theoretic entropy, based on the observations at ¢+ = 0, and evolving in time to
the correct thermodynamic entropy as calculated from conventional equilibrium
statistical mechanics. We shall examine in more detail several specific, simple cases
in Sections 7 and 8, and discuss the results more generally in Section 9.

5. EQUIPARTITION OF ENERGY

In this section, we demonstrate equipartition of energy for both types of chains.
The kinetic energy of the rth particle is p,?/2m, and the potential energy for the
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harmonically bound particle of case (b), when K>k, is approximately m€22x,%/2.
For the simple chain of case (a) however, the meaningful potential energy is that of a
spring, given by k(x,,; — x,)%/2. From the initial distribution of Eq. (17), it is easily
seen that, for the chain outside the subsystem, the initial energy expectation values are

{p2y/2m = 32m (48)
mE2x,25,/2 = mE2e?/2 49)

and
K — X)0l2 = ke (50)

Thus, we see that, unless € and { are chosen for the purpose, the kinetic and potential
energies in the outside system are not initially equipartitioned, and, inside the sub-
system, the energies can be anything. We now proceed to calculate, using py of
Eq. (45), the time-evolved energy terms corresponding to those of Egs. (48)-(50).
Since we are interested at present in limits as ¢ — o, we replace X’ in Eq. (45) by X,
since the effects of initial conditions will have vanished. We first calculate <{x,2>
for r in the subsystem as

= [ x 2ol {pab 1) T1 da dps

n=1

= (2m)~V (det W)~1/2 j x,2 exp[— XW-1X/2] [N] dx,, dp,, . 3D

n=1

We write, by Eq. (39a), x, = Yoy L;¥;, and use Eq. (43) to obtain

2N 2N 2N
(2> = Qay N (det W)‘lﬂf Y L,L;Y,Y;exp [—— Y YnZ/ZAn] I14dx, (52)
2,9=1 n=1 §=1
2N
= > L2
=1
<xr2> = ET/‘]‘LT (53)

where L, is the rth column vector of the matrix L. Therefore, we obtain simply that
XD = W = M, (54)
by Eq. (31). Then, from Eq. (29a), we have
$x = (0@ — &) 4, + a,, + (8* — ) D,, + {2d,,. (55)
Similar calculations yield

P = Qp = (&8 — )C,, + ¢, + (8% — Cz) Ay + Lay, (56)
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and
<(xr+1 - xr)2> = Mr+1,r+1 - 2Mr,r+1 + M,,
= ((Xz - 62)(‘477‘ + AT+1,'H—1) + EQ(aM + a7‘+l,7+1)
+ (82 - €2)(D’l‘7‘ + D7"+1,'r+1) + €2(drr ‘f* dr+1,¢+1)
- 2(0(2 - 62) A?‘,T—i-l - 2€2ar,r+1
2(82 - §2) D'r,r+1 - 2§2dr,7'+1 . (57)
We now evaluate the quantities needed for the final energy in the two cases,
noting, first, that all upper-case letters in these results represent finite sums of functions
that vanish as ¢ — oo, and that we need only the lower-~case letters already expressed
in Egs. (23), (24), (26), and (27).
For case (a), the simple chain, the kinetic energy is
p2m = (E2m)(mw)[J(0) 4- Jy(dwt) — Jo(dwn)] -+ (ZP/Am)[1 + Jy(dwi)]
— $[(5/2m) + mw?e’] (38)

and the potential energy of a spring 1s

k(xpq — xY0/2 = (k21 + Jy(dwt) — Jy(dw!)] - (k2/4Am?w?)[1 — J(dwt)]
~> 3[{32m) + mw?e’] (59
since k = mw?. Equations (58) and (59) show not only that all the masses of the
system have the same final kinetic energy, which is equal to the final potential energy
of each spring, but also that energy is really shared, since the term in square brackets
in these equations is just the sum of the initial kinetic energy of an outside mass,

from Eq. (48), and the initial potential energy of an outside spring, as given by Eq. (50).
It is convenient here to define an equilibrium temperature for system (a) by

ksT, = (8*2m) + maw?e® (60)

so that Egs. (58) and (59) may be written
P2 [2m = KXy — %,)%[2 = kpT,/2 (61)

A similar calculation for the harmonically bound chain, case (b), yields
(p[2m = (mS2fA)[1 — Jo(2yQRt) cos(220)] + (LF/4m)[1 + Jo(2y21) cos(2£21)]
— §{(8/2m) + (m2e*/2)] (62)
and

mE2(x, )2 = (M2l + Jo(2y2¢) cos(22¢)] + (53/4m)[1 — Jo(2y£2t) cos(2£2t)]
— 3[(83/2m) + (mi2[2)€]. (63)
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Again we have found equipartition, and again we define an equilibrium temper-
ature by

kgTy = (B2/2m) - (m£2?/2)e? (64)

where, this time, the energy on the right-hand side of Eq. (64) is the total average
initial energy of a particle in the heat bath. (Here the, coupling energy has been
neglected; its inclusion still leaves the average equilibrium values of kinetic and
potential energy equal, but apportions the potential energy between the two kinds of
springs.)

Evidently, we could have chosen any part of the chain for the calculation of the
equilibrium value; our result therefore shows that the entire chain approaches
equilibrium, and that equipartition is a directly-derived consequence of the use of the
reduced Liouville function py to calculate averages. We discuss this result further in
Sections 7 and 9.

6. CORRELATIONS AND DIFFUSION

Two different kinds of correlations may be examined—those relating the value of
a dynamical variable at time ¢ to the value of a dynamical variable at # = 0, and those
relating two dynamical variables at time 7. The former follow almost trivially from
Eqgs. (5) and (17), without the necessity for further statistical analysis. As an example,
the first kind of correlation coefficient for two momenta can be calulated as

PLp, (1), P, O] = {p 1) P, . (OD/[ 2,0 P}, (ONT

= [ f PO Prin0) p({xh, { P}, 0) [T dx(0) dps(0)  (65)
j=co
provided both masses are members of the heat bath (for simplicity) and p,,.(¢) is
given in terms of the initial conditions by Eq. (5b). The integrand is an infinite sum
of terms, each of which is odd in p,,(0) except for the one term in p,(¢) that depends
on p,.{0); its coefficient is §,(¢£)/Q2 = f(¢), and the integral of that single nonzero
term is {3f,(¢). Thus, we have

PpA0), rinO)] = fu(2) (66)

where f,(¢) is given by Eq. (6) for case (a) and by Eq. (8) or (9) for case (b). Similarly,
we find, for the coordinates of the heat bath,

Plx1), xr4n(0)] = fult) ()

the same result as for the momenta. These results and their implications have been
discussed by Mazur and Montroll,'® who obtained (66) differently.

The second kind of correlation is more interesting; it may be calculated either
directly, by the method of Eq. (65) with both dynamical variables time-dependent
and expressed in terms of the initial conditions by Egs. (5), or by the method displayed
in Section 5 for such quantities as {x,2>. In either case, the results may be conveniently
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expressed in terms of the already-defined elements of the matrix W of Eq. (31). We
obtain

P[xr(t)a xr+n(t)] == Mr,r+n/[Mrer+n,r+n]1/2 (68)

P[pr(t)a pr+n(t)] = Qr,r+n/[erQr+n,¢+fn]1/2 (69)
and

P[xr(t): Pr+n(f)] = Hr,r+n/[Mv-rQr+n,r+ﬂ]1/2- (70)

For case (a) as 1 — oo, Eq. (69) gives

P[pr(t)s pfr+az(t)] - [Czson + (mwe)2(28‘m - 8ln - 81%)]/[£2 + 2(}’}’[(1)6)2] (71)

so that momenta of adjacent particles are seen to be anticorrelated, with a correlation
coefficient of —1/4 (when {*/2m = mw?e® = kT,/2), and no other momentum
correlations exist. For case (b), all off-diagonal momentum correlations vanish as
t— oo, as do the position correlations.

Before examining the limit of Eq. (68) for case (a), we first evaluate {x,2, as
expressed by Eq. (55). Only a,, and d,, persist for large values of ¢; these yield

G > &2 + (2o [ [ 5 3) dy — Hdan)] (72)

For large | ¢ |, the integral approaches 41, depending on the sign of ¢, and J;(2wt) =
O(t71/%), so that Eq. (72) becomes, with o = #/| t | = 41,

(0,2 — (Cot/2wm?) -+ O(F2). (73)

This result may be understood as a Brownian motion of the particles of chain (a),
which are not harmonically bound to any home position, and thus may be expected
to drift. We may identify a coefficient of diffusivity from the relation (x*> = 2D| ¢ |, as

D = [*4wm?. (74)

If the heat bath energies were initially equipartioned, so that {2/2m = mw?e® = k3T ,/2,
as in Eq. (60), then Eq. (74) becomes

D = kyT,/4mw (75)

We note, however, that Eq. (74) correctly relates D to the initial variance in the
momentum distribution of the heat bath, but not to e, a result we believe to be new.
We now calculate {x,(f) x,,,(t)>, for large values of ¢, as

n dwrt
Ctrind = 55> — (Cf2om) Y [ Tua(3) - (76)
k=1
For large times, the integrals in Eq. (76) are very nearly unity, so we may write

<xrx1'+n> g <xrxr> - (Z/zwm)zn (77)
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showing that the correlation deteriorates as the separation increases. However, for
any finite separation, the correlation coefficient approaches unity as t — o, or

Plx (1), x,, (O] = <x,.x, >[5 DT
— 1 — (n/wto) — 1. (78)

The complete correlation, in the limit, of all positions of a finite length of the
chain simply implies that the Brownian drift cannot lead to appreciable storage of
energy in the coupling springs. We examine another aspect of this Brownian motion
in the next section.

7. LIOUVILLE FUNCTIONS FOR SIMPLE SYSTEMS

In this section, we display py from Eq. (45) explicitly for a one-particle system
of both types and for an N-particle system, after a long time, for case (b). The cal-
culation of py requires that we obtain W2, which is given, for N = 1, by

Wt = (det W)t (—IQJE 7S (79)

leading directly to the result
px, p, 1) = [Qm)?* (M,,Q,, — HI)I'*
X expl—(Q,,x? — 2H, x'p" + M\, p)/2AM,,Q,, — H{DI  (80)
where
X' =x — Uy = x — uyfot) — (0/mE)g(t) (8la)

and
P =p—Vi=p—umft) — @:/Q) ). (81b)

For case (a) at large | ¢ |, My, is given by Eq. (73), Qy; by Eq. (58), and Hy, is
obtainable from Eq. (29b) in the limit as

Hyy — @by + ey — olP/dwm. (82)
Using Eq. (74) for D, we write, still for case (a),

mD \27-1/2

]

—(mkpT,x* — omDxp -+ 2p*Dot)
202k T ,mDot ~— (mD/2)?)

pr(x, p, 1) = Q) [2kaTumDot —

X exp (83)

a result that depends on time, but not in an obviously understandable way .To expose
py Tor better analysis, we reduce it again, first integrating p;(x, p, t) over x to obtain
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the momentum distribution function, and then integrating p,(x, p, ¢) over p to obtain
the coordinate distribution function. We have

Pl(P» t) = f pl(x:p> t) dx

= QumkyT,)"1/? exp(—p?/2mkzT,) (34)

the proper canonical distribution function for the momentum. Similarly, the integral
over p gives

a0 = peepndp
= (47 Dot)"1/2 exp[—x?/4Dot] (85)

which is just the proper distribution function to satisfy the one-dimensional diffusion
equation

8p/ot = D &2p/ox? (86)

in agreement with the results of the previous section.

Brownian motion is usually obtained from the motion of a particle in a viscous
medium, subject to a stochastic force. The presence of the viscous drag destroys
time-reversibility in the dynamics. Here, the result was obtained without an irreversible
force, and the result of Eq. (85) is time reversible in the sense that p,(x, ) = p,(x, —¢),
since of = | 7 |. The diffusion as expressed by p; in Eq. (85) is a statistical result,
representing the fact that our knowledge of the system becomes increasingly poorer in
both directions of time as we move away from ¢ = 0. From our limited knowledge
of the present, we can neither predict the future nor unravel the past.

For case (b), the harmonic binding prevents diffusion, and Eq. (80) yields, for
large values of ¢,

plx, p, 1) = (Q)2akpT,) expl—(m&2x* + p*/m)/2ksT] (87)

a result that is seen without further analysis to be the product of two canonical
distributions, one for x and the other for p, at the equilibrivm temperature 7, .

Since W becomes diagonal as ¢ — oo for case (b), we easily obtain px({x}, {p}, 1)
from Eq. (45) as

N
o3, £ b, 1) = (Q2mkg T exp [—(ﬂcm)—l S (it + pnz/m)]

n=1

= H pl(xn s Pn s t)' (88)

n=1

This is the expected result for a canonical distribution of very weakly interacting
oscillators.

8. THE ENTROPY FOR SIMPLE SYSTEMS

Equation (47) gives the information-theoretic entropy of the system at any time,
through the time dependence of W. We shall examine the entropy for the three simple

822/1/3-3
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systems of the previous section, all for large values of time. The one-particle, case (a)
system gives
Sy = kg + kgIn #2kpT,mDot — (mD/2)*11/2, 89)

Here, we find the entropy increasing without limit as In ¢, a result that agrees with the
previously derived Brownian motion.
The one-particle, case (b) system gives

8y = kp[l + In(ksT,/#€2)] (%0)

and the N-particle system gives Sy = NS, as it should. The entropy of Eq. (90)
arose as t — oo through our information state being describable only as equilibrium;
yet, it agrees exactly with the classical canonical entropy of a harmonic oscillator in
equilibrium with a heat bath. Thus, we have demonstrated that our procedure leads
to the correct thermodynamic equilibrium.

9. DISCUSSION

Systems of coupled oscillators have been studied extensively in the attempt to
establish a dynamical basis for equilibrium statistical mechanics. A finite, isolated
system of coupled harmonic oscillators does not approach equilibrium or share
energy among its normal modes. Fermi et al.'® carried out computer studies of a
finite, isolated system of coupled anharmonic oscillators, believing, as J. Ford® did
later, that the nonlinear forces would produce a Gibbs-like stirring in phase space,
thereby leading to ergodicity, energy sharing among the normal modes of the linearized
system, and equilibration. They found very little tendency toward equipartition,
though Ford and Waters"® did succeed in demonstrating that the energy of a single
oscillator in a finite, nonlinear system has a Boltzmann distribution.

Apparently, the fundamental difficulty with the finite, nonlinear systems as models
in statistical mechanics is that, although ergodicity is their only pathway to equi-
partition, they are not, in general, ergodic; indeed, Kolmogorovi®® has shown that
fairly complicated nonlinear systems are not ergodic. Northcote and Potts,*? however,
seem to have achieved time-reversible ergodicity and complete energy sharing in a
finite system of harmonically-coupled hard spheres that can redistribute the normal-
mode energies by collision.

The practical objection to the use of most of these nonlinear models in statistical
mechanics is that, for most purposes, only numerical analysis is possible. For harmonic
systems, on the other hand, analytic techniques are well developed and lead to
intvition-guiding results.

Since we wish to establish a generally valid basis for the approach of dynamical
systems to equilibrium, we do not regard ergodicity as fundamental, because it is
demonstrably not a property of many common dynamical systems that are important
in statistical physics. We have chosen, instead, what seems to be a natural synthesis
of the views of Blatt, Jaynes,®% and Katz.® Blatt states that interactions between
the system and the outside world govern the approach to equilibrium, rather than
interactions within the system itself. We have expressed this point of view mathe-
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matically in terms of the Liouville function for an infinite chain of coupled harmonic
oscillators, reduced by integrating over the coordinates of the *outside world,”
to a function py({x}, {p}. t), given by Eq. (45). This function, which depends only on
the variables of the system at time 7, is a probability density in the 2/N-dimensional
phase space of the segment of chain that is regarded as the thermodynamic system.
The temporal evolution of py is influenced, and ultimately dominated, by the “outside
world”; therefore, p, cannot satisfy the Liouville equation for the N-particle system,
although the original p formally satisfies the Liouville equation for the infinite chain.

The entropy, defined in accord with information theory,®* turns out to be the
Gibbs entropy,® except that we use the py of Eq. (45) rather than the Liouville
function for the isolated N-particle system. This modification of the Gibbs expression
is evidently the one Gibbs should have used in discussing the approach of canonical
systems to equilibrium, since it takes into account interaction of the system with the
heat bath. We show that py approaches the canonical distribution as t — 4o for
the harmonically bound chain, and note that Jaynes® has shown the Gibbs entropy
to yield the correct thermodynamic value when py is the canonical distribution.

In our view, then, the approach to equilibrium lies entirely in the statistics, in
the evolution of our knowledge of the system, and not in dynamics or ergodicity.
The equations of motion here are time reversible, as is usual,®-1%-12 but, as Katz
has emphasized,’® the system reaches what we call “equilibrium” because of our
increasing inability to supply the information required for utilization of the equations
of motion to describe the system. During evolution toward equilibrium, no infor-
mation is lost; everything we knew at ¢ = 0 can be kept on record. But, from an
examination of, say, Egs. (5) and (6), we see that, near |¢| = 0, only x,0) is
important in determining x,(¢), since only Jo(2w?) is nonnegligible for small |7 |.
As | t| increases, the higher-order Bessel functions successively become important,
while the lower-order ones decay in amplitude as | ¢ |~1/2. Thus, it is evident that
the significance of its own initial condition fades, and increasingly remote events
become pertinent to any particle in the system as time evolves. Therefore, no matter
how well we know the initial conditions of our system, we ordinarily do not expect
to have detailed knowledge of the surroundings, and we see that, ultimately, the
only pertinent data for our system are the initial conditions of increasingly remote
parts of the surroundings. Our only choice is to express our knowledge of the distant
parts of the “outside world”™ statistically. In the absence of further measurements,
we describe our finite system as approaching equilibrium as the inwardly diffusing
statistical fog blankets our ability to extract useful information from the equations
of motion.

In this formulation of the approach to equilibrium, ergodicity is not a considera-
tion, and there are no paradoxes of reversibility or recurrence, simply because the
information required or the description of the open system grows monotonously
with | ¢ ].

If one adopts Blatt’s attitude® that all systems are, in reality, open, and that
statistical mechanics properly pertains only to these imprecisely known systems, then
the kind of reduced Liouville function developed here seems to be the proper one
for studying the approach to equilibrium. Even if one regards Blatt’s view as an
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overstatement, since it would exclude microcanonical ensembles from statistical
mechanics, our reduced Liouville function still seems to be the proper one for the
treatment of canonical ensembles.

Equipartition of energy was demonstrated in Section 5, and an equilibrium
temperature was obtained, both as consequences of statistics, and not of dynamics.
Temperature is generally regarded as a statistical concept, related to our inability
to assign detailed energies to the individual particles, and it is appropriate that it
should be specified in terms of equipartitioned energies. We note that equipartition
of energy is not sufficient for equilibrium; our case (a), for example, succeeds in
equipartitioning energy, but the Brownian motion, which must exist for a chain that
is not bound to any home position, is not an attribute of true equilibrivm. The system
of Northcote and Potts®® also succeeds in equipartitioning energy, but the Gibbs
entropy is a constant of the motion, and the missing pertinent information does not
change. All the information necessary for a complete dynamical description of their
system persists, and the decision to describe it in terms of thermodynamic variables
is tantamount to a decision to throw away or disregard a considerable body of infor-
mation. (One can, by this choice, attain equilibrium in a microcanonical ensemble.
We expect to compare definitions of entropy, and means of attaining the state of
information described as “equilibrium,” in a forthcoming paper.)

We note also that the information-theoretic approach to equilibrium may lead
to a final, stationary, equipartioning distribution that differs nontrivially from the
canonical one. In a future paper, we expect to discuss the simple chain with one point
fixed, so that Brownian motion is eliminated. The noncanonical momentum corre-
Iations of Eq. (71) still exist, when initial conditions are chosen as in this paper, and
the final state is clearly one of equilibrium, but the distribution is not of the canonical
form.

The entropy, as given by Eq. (47), has the interesting property that it is determined
entirely by the time-dependent bilinear expectation values of the coordinates and
momenta of the system; i.e., we may write the matrix W as

M H
W= (FI Q)
where M = {xux;>, Qy = {p;p;>, and H;; = {(x,p;>. The initial conditions were
chosen by us (though not necessarily so) such that W begins as a diagonal matrix.
As 7 increases, the off-diagonal elements become important as a consequence of
interactions. For the harmonically-bound oscillator chain, the growth of off-diagonal
terms may be pictured as a pair of wavefronts moving toward opposite corners of W
from the main diagonal, leaving behind a decaying, finite-amplitude oscillation. The
“wave” moves out of W, into the outside world, the off-diagonal elements decay to
zero, and the diagonal elements decay to their equilibrium values, leaving W once
again diagonal. But, for the simple chain, off-diagonal elements persist, illustrating
the necessity for retaining the complete matrix W in the calculation of the entropy,
rather than adopting a Boltzmann-like approach of calculating the entropy of an
N-particle system from p, , the single-particle, reduced Liouville function.
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10. HISTORICAL NOTE

In this section, we attempt to cite some of the most important contributions to
the ever-popular problem of coupled harmonic oscillators in statistical physics.

The dynamics of the infinite, simple chain of our case (a) was solved elegantly
by Schrodinger,™® who obtained results equivalent to our Eqgs. (6) and (7). These
results were used by Klein and Prigogine,“¥ who obtained equipartition of energy,
corresponding to our Eqgs. (58) and (59), for the infinite chain with uncorrelated
Gaussian initial distributions of the Schrodinger variables. They did not, however,
discover the Brownian motion, since they looked only at the Schrédinger variables
(which show spring stretchings, but not displacements).

The most detailed treatment of the simple chain is that by Hemmer,"® who
obtains Brownian motion, as we do, as a consequence of the distribution of initial
values. He uses an initially-thermal heat bath, rather than our independent Gaussian
distributions of x’s and p’s, and obtains a diffusivity twice the value given by Eq. (75).
(We have not yet discovered the reason for the discrepancy.} Hemmer obtains essen-
tially our Eq. (80) for the single-particle distribution function, although his matrix
elements differ somewhat from ours because of the different initial conditions. He
discusses a number of points not yet treated by us, such as finite chains, quantized
systerns, thermal conductivity, and the Brownian motion of a massive particle in an
infinite chain.

Henley and Thirring™® treat the dynamics of a finite, harmonically bound chain
by the normal coordinate method, obtaining results that can easily generate our
Eq. (8) in the limit. We have seen no other explicit treatment of this system. The
work of Mazur and Montroll,®® however, is sufficiently general to yield our Eq. (66)
for the time-relaxed momentum correlations of any chain of harmonic oscillators.

We have seen no other calculations of py, given by Eq. (45), as a reduced
Liouville function for a general N-oscillator subsystem of an infinite chain, nor have
we seen the entropy of such a system, as given by Eq. (47). A calculation of p; for
the simple chain is given by Klein and Prigogine*® and by Hemmer,"® but entropy
is not mentioned.

The covariance matrix W has been used in various calculations of distributions
of initially Gaussian variables®’-1%  and we have found one suggestion®® that the
entropy could be written in terms of W.

When the initial distribution of the heat bath in the simple chain is taken to be
canonical (a convenient procedure with Schrédinger variables'4:1®) the anticorre-
lation of adjacent momenta vanishes. This result is displayed explicitly by Rubin, @
for example, and is easily derived from Hemmer’s work. We have seen no analysis
of the approach to equilibrium, other than the present one, in which the initial
distribution in the heat bath was chosen to be nonthermal.

11. CONCLUSION

Finite subsystems of infinite chains of coupled harmonic oscillators have been
shown to be useful and instructive models for study of the approach of a thermo-
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dynamic system to equilibrium. The Gibbs, or information-theoretic, entropy,
defined in terms of the N-particle reduced Liouville function, exhibits the correct
temporal behavior and decays to the value expected from equilibrium statistical
mechanics. We conclude, then, that our approach is a valid one that is direct, analyt-
ically not very difficult, physically acceptable, and free of the conceptual difficulties
related to ergodicity and the paradoxes of time reversibility and Poincaré recurrence.
We expect treatments in terms of the reduced Liouville function to be useful and
enlightening in a variety of problems of nonequilibrium statistical mechanics, many-
body theory, and plasma physics.
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